Refine Your Search

Topic

Author

Search Results

Technical Paper

Control Analysis for Efficiency Optimization of a High Performance Hybrid Electric Vehicle with Both Pre and Post Transmission Motors

2016-04-05
2016-01-1253
The drive to improve and optimize hybrid vehicle performance is increasing with the growth of the market. With this market growth, the automotive industry has recognized a need to train and educate the next generation of engineers in hybrid vehicle design. The University of Waterloo Alternative Fuels Team (UWAFT), as part of the EcoCAR 3 competition, has developed a control strategy for a novel parallel-split hybrid architecture. This architecture features an engine, transmission and two electric motors; one pre-transmission motor and one post-transmission motor. The control strategy operates these powertrain components in a series, parallel, and all electric power flow, switching between these strategies to optimize the energy efficiency of the vehicle. Control strategies for these three power flows are compared through optimization of efficiencies within the powertrain.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Measurement of Temperature Gradient (dT/dy) and Temperature Response (dT/dt) of a Prismatic Lithium-Ion Pouch Cell with LiFePO4 Cathode Material

2017-03-28
2017-01-1207
Lithium-ion batteries, which are nowadays common in laptops, cell phones, toys, and other portable electronic devices, are also viewed as a most promising advanced technology for electric and hybrid electric vehicles (EVs and HEVs), but battery manufacturers and automakers must understand the performance of these batteries when they are scaled up to the large sizes needed for the propulsion of the vehicle. In addition, accurate thermo-physical property input is crucial to thermal modeling. Therefore, a designer must study the thermal characteristics of batteries for improvement in the design of a thermal management system and also for thermal modeling. This work presents a purely experimental thermal characterization in terms of measurement of the temperature gradient and temperature response of a lithium-ion battery utilizing a promising electrode material, LiFePO4, in a prismatic pouch configuration.
Technical Paper

Comparing the Whole Body Vibration Exposures across Three Truck Seats

2017-06-05
2017-01-1836
Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
Technical Paper

An Active Control Device Based on Differential Braking for Articulated Steer Vehicles

2006-10-31
2006-01-3568
In this study, application of differential braking strategy to remove the oscillatory instability or snaking behavior of an articulated steer vehicle is presented. First, a linearized model of the vehicle is described that is used to represent the equations of motion in the state-space form. Then, this model is utilized for designing a sliding mode controller to adjust the differential braking on the rear axle to stabilize the vehicle during the snaking. The performance of the resulting active control system is evaluated in different driving conditions by using the linearized model. Finally, the control system is incorporated into a virtual prototype of the vehicle in ADAMS, and its operation is examined. The results from the linear model analysis and simulations in ADAMS are reasonably consistent.
Technical Paper

An Algorithm to Calculate Chest Deflection from 3D IR-TRACC

2016-04-05
2016-01-1522
A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
Technical Paper

Powertrain Modeling and Model Predictive Longitudinal Dynamics Control for Hybrid Electric Vehicles

2018-04-03
2018-01-0996
This paper discusses modeling of a power-split hybrid electric vehicle and the design of a longitudinal dynamics controller for the University of Waterloo’s self-driving vehicle project. The powertrain of Waterloo’s vehicle platform, a Lincoln MKZ Hybrid, is controlled only by accelerator pedal actuation. The vehicle’s power management strategy cannot be altered, so a novel approach to grey-box modeling of the OEM powertrain control architecture and dynamics was developed. The model uses a system of multiple neural networks to mimic the response of the vehicle’s torque control module and estimate the distribution of torque between the powertrain’s internal combustion engine and electric motors. The vehicle’s power-split drivetrain and longitudinal dynamics were modeled in MapleSim, a modeling and simulation software, using a physics-based analytical approach.
Technical Paper

Efficient Electro-Thermal Model for Lithium Iron Phosphate Batteries

2018-04-03
2018-01-0432
The development of a comprehensive battery simulator is essential for future improvements in the durability, performance and service life of lithium-ion batteries. Although simulations can never replace actual experimental data, they can still be used to provide valuable insights into the performance of the battery, especially under different operating conditions. In addition, a single-cell model can be easily extended to the pack level and can be used in the optimization of a battery pack. The first step in building a simulator is to create a model that can effectively capture both the voltage response and thermal behavior of the battery. Since these effects are coupled together, creating a robust simulator requires modeling both components. This paper will develop a battery simulator, where the entire battery model will be composed of four smaller submodels: a heat generation model, a thermal model, a battery parameter model and a voltage response model.
Technical Paper

Degradation Testing and Modeling of 200 Ah LiFePO4 Battery

2018-04-03
2018-01-0441
In this paper, a degradation testing of a lithium-ion battery used for an electric vehicle (EV) is performed and the capacity fade is measured over 400 cycles. For this, a 200 Ah LiFePO4 battery cell is tested under ambient temperature conditions with charge-discharge cycles at rate of 1C (constant current). Additionally, individual cell characterization is conducted using a C/25 (0.8A) charge-discharge cycle and hybrid pulse power characterization (HPPC). Later, the Thevenin battery model was constructed in MATLAB along with an empirical degradation model and validated in terms of voltage for all cycles. It is also found that the presented model closely estimated the profiles observed in the experimental data. Data collected from the experimental results showed that a capacity fade occurred over the 400 cycles and the discharge capacity at the end of 400th cycle is found to be 137.73 Ah. The error between model/experiments is found to be less than 3.5% for all cycles.
Technical Paper

The University of Waterloo Alternative Fuels Team's Approach to EcoCAR 2

2012-09-10
2012-01-1761
A series plug-in hybrid electric powertrain with all-wheel drive is designed using real-world drive cycles as part of the EcoCAR 2 competition. A stock 2013 Chevrolet Malibu Eco is being re-engineered to reduce fuel consumption and emissions while improving consumer acceptability. Waterloo utilizes a 18.9 kWh A123 energy storage system (ESS), which powers two 105 kW TM4 traction motors. A 2.4 L LE9 General Motors coupled to a 105 kW TM4 motor provides range extending performance. Each step of the design process is discussed, including a novel approach to powertrain selection and controls requirement selection that uses real-world drive cycles. The mechanical integration and unique ESS design is also discussed.
Technical Paper

A Review Study of Methods for Lithium-ion Battery Health Monitoring and Remaining Life Estimation in Hybrid Electric Vehicles

2012-04-16
2012-01-0125
Due to the high power and energy density and also relative safety, lithium ion batteries are receiving increasing acceptability in industrial applications especially in transportation systems with electric traction such as electric vehicles and hybrid electric vehicles. In this regard, to ensure performance reliability, accurate modeling of calendar life of such batteries is a necessity. In fact, potential failure of Li-ion battery packs remains a barrier to commercialization. Battery pack life is a critical feature to warranty and maintenance planning for hybrid vehicles, and will require adaptive control systems to account for the loss in vehicle range, and loss in battery charge and discharge efficiency. Failure not only results in large replacement costs, but also potential safety concerns such as overheating or short circuiting which may lead to fires.
Technical Paper

Improving Stability of a Narrow Track Personal Vehicle using an Active Tilting System

2014-04-01
2014-01-0087
A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim.
Technical Paper

Impact of Temperature on the A123 Li-Ion Battery Performance and Hybrid Electric Vehicle Range

2013-04-08
2013-01-1521
Within the last decade, the automotive industry has made major progress toward the electrification of drive trains and application of electrochemical power sources. Among available storage solutions, Li-ion batteries are considered as the most attractive and are set to be used in the next generation of hybrid and electric vehicles. This is due to their superiority in energy density, power density, and low self-discharge and high cycle life compared to other chemistries. However, there are some limitations associated with Li-ion battery; among them is the operating temperature range. Any deviation from a narrow temperature range may result in low overall performance and potential degradation of the cells. In this paper, impact of ambient temperature on the A123 Li-ion batteries performance is investigated. A123 cells have been tested under constant charge-discharge cycles, hybrid pulse power characterization (HPPC) tests and also standard drive cycle tests.
Technical Paper

Fuel Cell Hybrid Control Strategy Development

2006-04-03
2006-01-0214
Supervisory control strategies for a hybrid fuel cell powertrain are developed and simulated using Simulink models and the Powertrain Systems Analysis Toolkit (PSAT). The control strategy selects the power splitting ratio between a 65kW Hydrogenics fuel cell power module and a 70kW Cobasys Nickel Metal Hydride (NiMH) battery pack. Simple control algorithms targeting a battery pack State of Charge (SOC), or maximizing the instantaneous powertrain efficiency are initially considered and analyzed. A comprehensive control strategy optimizing powertrain efficiency, vehicle performance, emissions, and long-term reliability is then developed and simulated. The simulated vehicle using the comprehensive control strategy with reliability considerations exhibits a 21% mileage improvement as compared to a simple rule-based control algorithm.
Technical Paper

Weldability Improvement Using Coated Electrodes for RSW of HDG Steel

2006-04-03
2006-01-0092
The increased use of zinc coatings on steels has led to a decrease in their weldability. Weld current and time need to be increased in order to achieve sound welds on these materials compared to uncoated steels, and electrode tip life suffers greatly due to rapid alloying and degradation. In this work, typical uncoated Class II electrodes were tested along with a TiC metal matrix composite (MMC) coated electrode. Tests were conducted to study the weldability and process of nugget formation for both electrodes on HDG (hot dipped galvanized) HSLA (high strength low alloys) steels. Current and time ranges were constructed for both types of electrodes by varying either the weld current or weld time while holding all other parameters constant. Analysis of weld microstructures was conducted on cross-sectioned welds using SEM (scanning electron microscopy). Using the coated electrodes reduced weld current and times needed to form MWS (minimum weld size) on the coated steels.
Technical Paper

Fuel Cell Hybrid Powertrain Design Approach for a 2005 Chevrolet Equinox

2006-04-03
2006-01-0744
A fuel cell-battery hybrid powertrain SUV vehicle is designed using an optimized model-based design process. Powertrain and fuel storage components selected include a 65 kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) power module, two 67 kW electric traction motors, a 35 MPa compressed hydrogen storage tank, a 70 kW nickel metal hydride battery pack, and a University of Waterloo in-house DC/DC converter design. Hardware control uses two controllers, a main supervisory controller and a subsystem controller in addition to any embedded component control modules. Two key innovations of this work include the hybrid control strategy and the DC/DC converter. The final powertrain characteristics are expected to meet a set of Vehicle Technical Specifications (VTS).
Journal Article

Optimal Cooperative Path Planning Considering Driving Intention for Shared Control

2020-04-14
2020-01-0111
This paper presents an optimal cooperative path planning method considering driver’s driving intention for shared control to address target path conflicts during the driver-automation interaction by using the convex optimization technique based on the natural cubic spline. The optimal path criteria (e.g. the optimal curvature, the optimal heading angle) are formulated as quadratic forms using the natural cubic spline, and the initial cooperative path profiles of the cooperative path in the Frenet-based coordinate system are induced by considering the driver’s lane-changing intention recognized by the Support Vector Machine (SVM) method. Then, the optimal cooperative path could be obtained by the convex optimization techniques. The noncooperative game theory is adopted to model the driver-automation interaction in this shared control framework, where the Nash equilibrium solution is derived by the model predictive control (MPC) approach.
Technical Paper

Evolution and Redistribution of Residual Stress in Welded Plates During Fatigue Loading

2022-03-29
2022-01-0257
The presence of residual stresses affects the fatigue response of welded components. In the present study of thick welded cantilever specimens, residual stresses were measured in two A36 steel samples, one in the as-welded condition, and one subjected to a short history of bending loads where substantial local plasticity is expected at the fatigue hot-spot weld toe. Extensive X-Ray Diffraction (XRD) measurements describe the residual stress state in a large region above the weld toe both in an untested as-welded sample and in a sample subjected to a short load history that generated an estimated 0.01 strain amplitude at the stress concentration zone at the weld toe. The results show that such a test will significantly alter the welding-induced residual stresses. Fatigue life prediction methods need to be aware that such alterations are possible and incorporate the effects of such cyclic stress relaxation in life computations.
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Technical Paper

Fatigue Behaviour of Thin Electrical Steel Sheets at Room Temperature

2023-04-11
2023-01-0805
Electrical steel, also known as silicon steel, is a ferromagnetic material that is often used in electric vehicles (EVs) for stator and rotor applications. Since the design and manufacturing of rotors require the use of laminated thin electrical steel sheets, the fatigue characterization of these single sheets is of interest. In this study, a 0.27mm thick non-oriented electrical steel sheet was tested under cyclic loading in the load-controlled mode with the load ratio R = 0.1 at room temperature. The specimens were prepared using the Computer Numerical Control (CNC) machining method. The Smith-Watson-Topper mean stress correction was used to find the equivalent fully reversed stress-life (S-N) curve. The Basquin equation was used to describe the fatigue strength of the electrical steel and the fatigue parameters were extracted. Furthermore, a design curve with a reliability of 90% and a confidence level of 90% was generated using Owen’s Tolerance Limit method.
X